MANMOHAN TECHNICAL UNIVERSITY Office of The Controller of Examinations MODEL QUESTION, 2080 Asar

Level: BachelorYear/Part: I/IIFaculty: School of EngineeringF.M.: 50Program: Civil/Electrical & ElectronicsP.M.: 20Subject: Engineering Math II (EG451SH)Time: 3 Hours

- Group A contains Multiple Choice Questions.
- Candidates are required to give their answers in their own words.
- The figure in the margin indicate Full Marks.
- Attempt all Questions.

Group A $[10 \times 1 = 10]$

	(\sqrt{y}, \sqrt{y})				
1.	The value of $x \frac{\partial U}{\partial x} + y$	$\frac{\partial U}{\partial y}$ if $U = \frac{(\sqrt{x} + \sqrt{y}) \sin^{-1}(y)}{x^3 + y^3}$	is		
	a) -2.5U	b) -1.5U	c) 0	d) -0.5U	
2.	The area of parallelogram determined by vectors $\vec{i} + 2\vec{j} + 3\vec{k}$ and $3\vec{i} - 2\vec{j} + \vec{k}$ is				
	a) 8	b) 8√ <u>3</u>	c) 4√3	d) none	
3.	f \vec{a} is constant vector and \vec{r} is position vector then the value of $ abla$. $(\vec{a} imes \vec{r})$ is				
	a) 2 <i>ā</i>	b) -2 <i>ā</i>	c) 0	d) 3	
4.	The series $\sum_{n=1}^{\infty} (-1)^n$	$\frac{1}{\sqrt{2n+1}}$ is			
	a) conditionally conv	ergent	c) absolute conv	vergent	
	b) Divergent	-	d) oscillating	-	
5.	The value of $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dx dz$, is				
	a) 4	b) -2	c) 0	d) 5	
6.	The equation of plane through (-11, 4, -2) with normal vector $6\vec{\iota} - 5\vec{j} - \vec{k}$ is				
	a) 6x-5y-z+84 = 0		c) 6x+5y+2z+1 = 0		
	b) $-6x+5y+z+20 = 0$		d) 6x+4y-z+94 = 0		
7.	If the plane 2x-y+z = 0 is parallel to line $\frac{2x-1}{2} = \frac{2-y}{2} = \frac{z+1}{z}$; the value of a is				
	a) 4	b) 2	c) -2	d) -4	
8.	The section of sphere by the plane is				
	a) Circle	b) parabola	c) Hyperbola	d) ellipse	
9.	For the Bessel's function $J_n(x)$, the value of $[J_1(x)]^2 + [J_{-1}(x)]^2 =$				
			$\frac{2}{2}$ $\frac{2}{2}$		
	a) $\sqrt{\frac{2}{\pi x}}$	b) $\frac{2}{\sqrt{\pi x}}$	$c)\sqrt{\frac{2}{\pi}x}$	<i>d</i>) 1	
10.). For the Legendre polynomial $P_n(x)$ which is not true				
	a) P _n (1) =1	b) $P_0(x) = 0$	c) P ₀ (x) =1	d) $P_n(-x) = (-1)^n P_n(x)$	

Group B

Attempt any EIGHT questions $[8 \times 2 = 16]$

- 11. Find Unit normal vector to the surface $z x^2 y^2 = 0$ at the point (-1, -2, 5).
- 12. For the Bessel's function $J_n(x)$, prove that $J_{\frac{-1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$.
- 13. Find the image of point (1,3,4) in the plane 2x y + z + 3 = 0
- 14. Show that the lines $\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$ and $\frac{x}{1} = \frac{y-7}{-3} = \frac{z+7}{2}$ are coplanar.
- 15. Obtain the equation of sphere through circle $x^2 + y^2 + z^2 = 9$, x -2y +2z = 5 as a great circle.
- 16. Obtain the equation of right circular cylinder of radius 4 and axis is the line x = 2y = -z.
- 17. Find by double integration the area lying between curve $y = 4x x^2$ and line y = x.
- 18. If $U = sin^{-1} \frac{x^2 + y^2}{x + y}$ Prove that $\frac{\partial U}{\partial x} + y \frac{\partial U}{\partial y} = tanU$.
- 19. xpress $f(x) = x^3 5x^2 + x + 2$ in terms of Legendre's Polynomials.

Group C $[6 \times 4 = 24]$

- 20. Find the radius and interval of convergence of the power series $\sum_{n=0}^{\infty} (-1)^n \frac{(x-3)^n}{n+1}$.
- 21. Find the maximum value of xyz under the condition x + y + z = 8.
- 22. Evaluate $\int_0^a \int_0^{\sqrt{a^2 x^2}} y^2 \sqrt{x^2 + y^2} dy dx$ by changing to polar coordinates.
- 23. Solve the differential equation $y'' 4xy' + (4x^2 2)y = 0$ by power series method.
- 24. Prove that the necessary and sufficient condition for the vector function \vec{a} of scalar

variable t has constant magnitude is $\vec{a}.\frac{d\vec{a}}{dt} = 0$.

OR

- If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ and \vec{a}, \vec{b} are constant vectors then prove that $Curl [\vec{r} \times (\vec{a} \times \vec{b})] = 2(\vec{b} \times \vec{a})$
- 25. Find the magnitude and equation of the line of S.D between lines $\frac{x-3}{1} = \frac{y-5}{2} = \frac{z-7}{-3}$ and $\frac{x+1}{2} = \frac{y+2}{4} = \frac{z+3}{1}$.

OR

Find the equation of tangent planes to the sphere $x^2 + y^2 + z^2 + 6x - 2z + 1 = 0$ which passes through the line x + z - 16 = 0, 2y - 3z + 30 = 0.
