Manmohan Technical University
 Office of The Controller of Examinations
 MODEL QUESTION, 2080 Asar

Level: Bachelor
Faculty: School of Engineering
Program: Civil/Electrical \&Electronics
Subject: Engineering Math II (EG451SH)

Year/Part: I/II
F.M.: 50
P.M.: 20

Time: 3 Hours

* Group A contains Multiple Choice Questions.
* Candidates are required to give their answers in their own words.
* The figure in the margin indicate Full Marks.
* Attempt all Questions.

$$
\text { Group } A[10 \times 1=10]
$$

1. The value of $x \frac{\partial U}{\partial x}+y \frac{\partial U}{\partial y}$ if $U=\frac{(\sqrt{x}+\sqrt{y}) \sin ^{-1}\left(\frac{y}{x}\right)}{x^{3}+y^{3}}$ is
a) -2.5 U
b) -1.5 U
c) 0
d) -0.5 U
2. The area of parallelogram determined by vectors $\vec{\imath}+2 \vec{\jmath}+3 \vec{k}$ and $3 \vec{\imath}-2 \vec{\jmath}+\vec{k}$ is
a) 8
b) $8 \sqrt{3}$
c) $4 \sqrt{3}$
d) none
3. If \vec{a} is constant vector and \vec{r} is position vector then the value of ∇. $(\vec{a} \times \vec{r})$ is
a) $2 \vec{a}$
b) $-2 \vec{a}$
c) 0
d) 3
4. The series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{\sqrt{2 n+1}}$ is
a) conditionally convergent
c) absolute convergent
b) Divergent
d) oscillating
5. The value of $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z}(x+y+z) d y d x d z$, is
a) 4
b) -2
c) 0
d) 5
6. The equation of plane through $(-11,4,-2)$ with normal vector $6 \vec{\imath}-5 \vec{\jmath}-\vec{k}$ is
a) $6 x-5 y-z+84=0$
b) $-6 x+5 y+z+20=0$
c) $6 x+5 y+2 z+1=0$
d) $6 x+4 y-z+94=0$
7. If the plane $2 x-y+z=0$ is parallel to line $\frac{2 x-1}{2}=\frac{2-y}{2}=\frac{z+1}{a}$; the value of a is
a) 4
b) 2
c) -2
d) -4
8. The section of sphere by the plane is
a) Circle
b) parabola
c) Hyperbola
d) ellipse
9. For the Bessel's function $J_{n}(x)$, the value of $\left[J_{\frac{1}{2}}(x)\right]^{2}+\left[J_{\frac{-1}{2}}(x)\right]^{2}=$
a) $\sqrt{\frac{2}{\pi x}}$
b) $\frac{2}{\sqrt{\pi x}}$
c) $\sqrt{\frac{2}{\pi}} x$
d) 1
10. For the Legendre polynomial $P_{n}(x)$ which is not true
a) $P_{n}(1)=1$
b) $P_{0}(x)=0$
c) $P_{0}(x)=1$
d) $P_{n}(-x)=(-1)^{n} P_{n}(x)$

Group B

Attempt any EIGHT questions [$8 \times 2=16$]

11. Find Unit normal vector to the surface $z-x^{2}-y^{2}=0$ at the point $(-1,-2,5)$.
12. For the Bessel's function $J_{\mathrm{n}}(x)$, prove that $J_{\frac{-1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cos x$.
13. Find the image of point $(1,3,4)$ in the plane $2 x-y+z+3=0$
14. Show that the lines $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$ and $\frac{x}{1}=\frac{y-7}{-3}=\frac{z+7}{2}$ are coplanar.
15. Obtain the equation of sphere through circle $x^{2}+y^{2}+z^{2}=9, x-2 y+2 z=5$ as a great circle.
16. Obtain the equation of right circular cylinder of radius 4 and axis is the line $x=2 y=-z$.
17. Find by double integration the area lying between curve $y=4 x-x^{2}$ and line $y=x$.
18. If $U=\sin ^{-1} \frac{x^{2}+y^{2}}{x+y}$ Prove that $\frac{\partial U}{\partial x}+y \frac{\partial U}{\partial y}=\tan U$.
19. xpress $f(x)=x^{3}-5 x^{2}+x+2$ in terms of Legendre's Polynomials.

$$
\text { Group C }[6 \times 4=24]
$$

20. Find the radius and interval of convergence of the power series $\sum_{n=0}^{\infty}(-1)^{n} \frac{(x-3)^{n}}{n+1}$.
21. Find the maximum value of $x y z$ under the condition $x+y+z=8$.
22. Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} y^{2} \sqrt{x^{2}+y^{2}} d y d x$ by changing to polar coordinates.
23. Solve the differential equation $y^{\prime \prime}-4 x y^{\prime}+\left(4 x^{2}-2\right) y=0$ by power series method.
24. Prove that the necessary and sufficient condition for the vector function \vec{a} of scalar variable t has constant magnitude is $\vec{a} \cdot \frac{d \vec{a}}{d t}=0$.

OR

If $\vec{r}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}$ and \vec{a}, \vec{b} are constant vectors then prove that

$$
\text { Curl }[\vec{r} \times(\vec{a} \times \vec{b})]=2(\vec{b} \times \vec{a})
$$

25. Find the magnitude and equation of the line of S.D between lines $\frac{x-3}{1}=\frac{y-5}{2}=\frac{z-7}{-3}$ and $\frac{x+1}{3}=\frac{y+2}{-4}=\frac{z+3}{1}$.

OR

Find the equation of tangent planes to the sphere $x^{2}+y^{2}+z^{2}+6 x-2 z+1=0$ which passes through the line $x+z-16=0,2 y-3 z+30=0$.

